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Abstract-By considering two-phase flow as a field which is subdivided into two turbulent single-phase 
regions with moving boundaries separating the two constituent phases, such that the differential balances for 
three-dimensional turbulent flow hold for each subregion and for the interface, we perform the Eulerian area 
averaging over the cross-sectional area of each phase in a given channel and segment averaging of transverse 
momentum equation along the phase intercepts at the interchannel boundaries. To simplify the governing 
equations obtained as a result of these operations, we invoke the assumption that the motion of the fluid in 
each phase is dominantly in axial direction, that is the transverse components of velocity are small compared 
lo axial components. 

We further assume that the variation ofaxial component of velocity within a channel is much stronger than 
the variation along the axial direction. We also assume that similar arguments can also be applied to the 
variation of enthalpy in a channel. As a result of these considerations, we obtain two sets of continuity, 
momentum. and energy equations describing motion of each phase in the axial direction. The phasic 
interaction terms which appear in these equations are governed by interfacial transfer conditions obtained 
from interface balances. The segment-averaged transverse-momentum equation for each phase provides the 

governing equation for cross flow. 

NO.MENCLATURE 

cross-sectional area normal to z axis; 
cross-sectional area for kth phase; 
energy at interface defined by equation (6); 
ti + I(?)‘, sum of mass weighted internal 
energy and turbulent kinetic energy; 
acceleration due to gravity; 
local curvature (H,, > 0 if phase 2 is the 
dispersed phase) ; 
P + P//i; 
unit tensor; 
enthalpy ; 

unit vector in z direction; 
time-averaged pressure; 
time averaged heat flux; 
total intercept of kth phase at the in- 
terchannel gap ; 
total perimeter of the interphase at a given 
section; 
time ; 
specific internal energy; 
mass weighted fluid velocity vector; 
cross flow for the kth phase per unit axial 
length between channels i and j; 

Subscripts 

e, boundary between interconnected chan- 
nels ; 

1, vapor-liquid interface; 

:, 
channel i; 
kth phase; 

n, normal direction ; 
4 tangential direction; 

4 directed along x’ direction ; 
2, directed along z or z’ direction. 

Superscripts 

7; turbulent; 

4 total; 
fluctuating quantities about mass averaged 
variables ; 

t, fluctuating quantities about time averaged 
variables ; 

_’ time averaged quantity; 
mass averaged quantity. 

INTRODUCTION 

AN ACCURATE prediction of both single and two-phase 
(x, y,z), coordinate system at the center of a thermal hydraulics of a pin bundle for thermal or fast 

channel ; reactors is of extreme importance both to the design 
(x’, y’, z’), coordinate system at the interchannel gap. and the safety of these reactors. The fluid flow and heat 

Greek symbols 
transfer in a pin bundle is extremely complex, con- 
sequently with the exception of the formulation by 

nk, -Fkl + fk; Chawla and Ishii Cl], all previous attempts (see for 
P. time-averaged fluid density ; example [2-51) at formulating the governing equa- 
T, time-averaged stess tensor. tions both for single and two-phase flows have utilized 
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heuristic macroscopic balances using finite control 
volumes (e.g. subchannels) for mass, momentum, and 
energy. 

It has long been recognized that the cross-sectional 
area and volume averaging are very useful tools in 
formulating governing equations for fluid flow and 

heat transfer in very complex geometries. The volume 

averaging has been used very successfully in treating 
multicomponent flows in porous media [6--81. As a 
result of area averaging, the three-dimensional field 
equations are reduced to quasi-one-dimensional 
forms. The transfer of the momentum and energy 

between the fluid and wall is expressed by empirical 

correlations or by simplified models to supplement the 
information on changes of variables in direction 
normal to the main flow direction which are lost within 

a subchannel as a result of area averaging. However. 
the application of area averaging alone in a pin-bundle 

geometry does not yield a complete description of the 
momentum exchange between the channels at the 
interchannel boundaries. This consideration in turn 

has led to the use of segment averaging along the 
interchannel boundary of momentum equation in 
transverse (to the gap between the pins) direction to 

provide an equation for cross flow. These formal 
procedures were utilized for the first time by Chawla 
and Ishii [l] in the formulation of the governing 

equation for a drift flux model of two-phase flow in a 
pin-bundle geometry. The segment and area averaging 

has been proposed originally by Vernier and Delhaye 
[9] and Kocamustafaogullari [lo] for laminar flows. 

However, these authors have not formally applied 

their methodology to a pin bundle configuration or 
extended to turbulent flows. 

The drift flux model (or mixture model) is for- 

mulated by considering the mixture as a whole, rather 

than two-phases separately. The drift flux model thus 
requires only four field equations namely. continuity. 

momentum, and energy equations for the mixture. and 
the continuity equation for one of the phases. say 

vapor [l, 111. On the other hand. a two-fluid model of 
a two-phase flow is formulated in terms of two sets of 
conservation equations governing the balance of mass, 
momentum, and energy of each phase [12]. Since the 
macroscopic fields of one phase are not independent of 
the other phase, the interaction terms which couple the 
transport of mass. momentum, and energy of each 
phase across the interphases appear in the field 
equation, whereas in the drift flux model which 
considers the mixture as whole, these interaction terms 
cancel each other. In the two-fluid model formulation. 
the transport processes of each phase are expressed by 
their own balance equations, therefore it is expected 
that the model can predict more detailed changes and 
phase interactions than the drift flux model. Although 
the drift flux model is simpler than the two-fluid model, 
it requires some drastic constitutive assumptions since 
it has only four field equations in contrast to six field 
equations in the two-fluid model. Therefore, it is 
natural that some of the characteristics of two-phase 

flow will be lost in the drift model. The drift flux model 
is generally useful in analyzing two-phase flows where 
there exists a strong coupling between the motion of 
the two phases, and the information desired is the res- 

ponse of total mixture and not that of each constituent 
phase separately. F‘or example, in the dynamic analysis 

of two-phase flow systems where the response of total 

system is desired such as in the analysis of thermohyd- 
raulic flow instability problem in the boiling channels 

[13, 141. Two-phase flow problems involving a sudden 

acceleration of one phase ma> not be appropriatclk 
described by the drift flux model. In these cases, inertia 

terms of each phase should be considered, that is. by 
use of the two-fluid model. 

Previous studies hake indicated ihat unless phaslc 

interaction terms are accurate]> modeled in the two- 
fluid model, the numerical instabilities are frequently 

encountered in the numerical solution of these 
models [15~~ 171. Recent studies by Lahey rt cti. [[18] 
and Lyczkowski et al. [19] have demonstrated that 
virtual mass originating from momentum interaction 
between the two phases has a considerable effect on 

improving numerical stability and efficiency. Another 
approach to achieving numerical stability is the i:is 

elusion of ‘artificial visc0sir.y’ ~1 the numerical algo- 
rithm to damp out high frequency oscillations occur- 
ring possibly due to itnprecisL% modeling. This al)- 
preach is currently being followed hq Amsden and 

Harlow [20] in their two-fluid digltal computer codes. 

In spite of these shortcomings of the two-fluid model. 
there is, however, no substitute amilable for modeling 
accuratel? two-phase phenomena where tu<) phases 
are weakly coupled. The objectlie ofthc present paper 

l\ to :)btain the gokerning equa\~onh for tire-fluid 
model for two-phase Ilow< 111 ;I pm bundle getmetrl. 

We view two-phase tloh a\ a held which I’ sub- 
divided into two turbulent sin&-phase regions with 
moving boundaries separating the two constituent 
phases. such that the differential balances for turbulent 
flow hold for each subregion and for the interface, 
wherein the latter differential balances which accounts 
for singular characteristics of the interface, we further 
assume that all interfaces are identical. of zero thick- 
ness. and have the same interlace leloclty. With the 
exception of the interface \elocit>. ML” assume that all 
other $lngular transferrable properties of the interface 
are turbulent in nature. Since the turbulent tields in 
each subregion are unsteady hccause of the rnovmg 
and deforming interfaces, one must view conceptually 
these turbulent balances as ensemble averages which 
are constructed with an assumption that all the 
samples of two-phase flows in an ensemble are statis- 
tically identical such that if all are observed at a given 

instan: of time, a given point m each sample is 
surrounded by the same phase i)r IS located at the 
interface implying the structure of two-phase flows and 
the geometry of interfaces arc identical between the 
samples. By assuming further rhat the two-phase flow 
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is temporally stationary, then by the ergodic hypo- 
thesis the ensemble averages at a given instant of 
time become equal to temporal averages. This method- 
ology clearly implies extension of the continuum 
approach applicable to a single-phase unsteady turbu- 
lent flow. Consequently, the governing equations for 
each of the bulk phases are identical to the basic 
Reynolds’ equation for nonsteady turbulent flow. This 
basic consideration is identical to that utilized by 
Slattery [21]. In view of the assumption that interfaces 
consisting of singular surfaces of zero thickness rather 
than assuming three-dimensional regions of finite 
thicknesses, the resulting jump conditions are identical 
to those that will be obtained by volume integration of 
single-phase turbulent flow over material volume 
containing a phase interface in the manner as done by 
Slattery [21]. 

The previously discussed methodology for obtain- 
ing basic governing equations differs both from the 
procedure by Ishii [22] and that by Delhaye [23]. Ishii 
directly formulates a two-fluid model for three- 
dimensional two-phase flows by time averaging the 
two-phase mixture rather than each component as we 
have carried out. On the other hand, Delhaye recom- 
mends double time averaging of two-phase mixture to 
smooth out the discontinuities in the time derivatives 
of single time-averaged quantities in the field. 

Bulk phase 
In view of the above discussions, the basic governing 

equations for the bulk phase can be written as (see [24] 
for detailed derivation) : 

continuity 

~+v.(p,,)=o: (1) 

momentum 

~fV’(“k~k~k)=-vPk+v~(fk+7~)+pkgk; 

(2) 

energy 

%%i;, 
at + v.(p&) = -V.(& + ql) 

+ % + 4. vq + (fk + 2:): vt$. (3) 

In the above equations, we have utilized a mass- 
weighted-averaging procedure rather than conven- 
tional time averaging. The former procedure is well 
known in the studies of gas mixtures. The mass- 
weighted averaging greatly simplifies the governing 

equations. For example, it eliminates terms like p;u;, 

V,&v;, and p;vlv; in the continuity and momentum 
equations. Analogous simplifications are also achieved 
in the energy equations. In fact, as a result of a mass 
weighting, the form of the equations is the same as for 
incompressible flow. To illustrate this, let us for 

example consider the time average of convective flux of 
a quantity 

PkYP, = (Pr, + PX% + YL)(G + 0;) 
7 _ _ 

= PkYkVk + p:Y#t + plrY’,l$ 

+ PkY& + &Y;U;. 

In view of definition of mass-weighted quantity, i.e., 

Y&5$ G+k 

we have 

m = m = &‘y;& = 0 

which results in 

&Y’,V, = PkYk& + p,Y’;l& 

The form of the above equation is clearly the same as it 
would be for incompressible flow. 

Interface 
A detailed statement of underlying simplifying as- 

sumptions and the derivation of interface balance 
equations is given in [24]. These balance equations are 
reproduced here for ready reference : 

mass 

(4) 

= : + pk + 7;“” nk + t:,t 

> 1 
(5) = V;nan; 

energy 

-~k’[(~k+.r,T)+k-,}=~:k=O (6) 
k 

where 

7: = fk + 7;. 

AREA AVERAGED EQUATIONS 

We assume that both in the liquid and in the vapor 
phase, the motion of the fluids is dominantly in the 
axial direction, that is the transverse components of 
velocity are small compared to the axial component. 
We further assume that within a channel the variation 
of the axial component t& is much stronger than the 
variation along the axial direction. This behavior is 
analogous to that which exists in a boundary layer so 
that the longitudinal or axial length scale L (in which 
the axial variations in ukZ take place) is very much 



Larger than the length scale 6 in a transverse direction ~~)~~~~~~~J~~ ~~1~~~~~~~ 
(over which transverse variations in rkz take place) i.e. The application of equations (A.21 and (Ah) to 

6/L<< 1. We further assume that similar arguments can equation (2) yields 
be applied to the variation of enthalpy or temperature . 
in a channel. In conclusion, it is assumed that the 
boundary layer approximation can be applied 

“ (uk((/Jk)) {Ckj)i+ ’ (clk((&l’k_i’k>ii, 
i;i 1’: 

Continuity equation 
The application of Leibnitz theorem (A.2) and 

divergence theorem (A.6) (see Appendix) to equation 
(1) yields for a channel denoted by i in the subassembly 

(7) 
4. (<8k>Nk)igk 114) 

where Xi = XkM. + %,, subscript IV stands for a wall or 
an impenetrable surface, and ({ $ j denotes a mass 
weighted, area averaged quantity. IX. 

= -(.s,(ljik))i - c Wkij (9) 

Here (<. >)) defines the area averaged value of a 
quantity, i.e. 

<Fk>(Z, tf = 1; 

11 

F&s, .1‘, z. t)drc. (10) 
Y a* 

In a typical reactor application, the point-wise vari- 
ation of the density in a phase at a given axial 
location in a channel is generally small as compared to 
the axial variation. It is therefore assumed that 

<Pk>(Z, f, = Pkfzr 1). ilI1 

In view of assumption (1 l), equation (9) becomes 

(8bj From the use of equation (I 1 b. ;hc ahow relationship 
becomes 

{FIG) - ((F,_ii. i 16) 

In view of the assumed applicability of boundary-layer 
approximation to the flow in tht: pin bundle for each 
phase the normal components of the vector momen- 

In view of interface balance equation (4) and definition 
(8a) we obtain the following interfacial area averaged 
mass-transfer condition 

i (F?ik) = 0. (13) 
k=1 

turn equation (14) are smalt compared to the axial 

component, furthermore. 

((P,)) = P,g.. 11. 1171 

The abo\;c assumption is consistent with lhe 

boundary-dyer approximatiot~ ~~pplicable to vertical 
flow in a pin bundle. In view of these simplifications. 
the momentum equation (14) simplifies to 
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+ [s (ikz + 73 . nk% 

Mb nk ‘nke 1 ij 

-[s d%? 
u, Pk@k - h) . nkck ’ K __ 

nk 'nkI 1 i 

d%? 
PkCk . nkCk,, ~ 

nk ‘nke 1 - (pkak)igr (18) 
ij 

where we have assumed that the gravity is the only 
body force. The above equations can be simplified 
further by noting that 

(19) 

(21) 

Equation (18) becomes 

+C 
j [S H,, bk 7: - pkckGk ’ nk) ’ K& 1 ij 

+ [s dV 
(-r?ikijk - Pknk + n,.T;).K---- 

M, nk ‘nkl 1 i 

- p,n,.K& 
k’ 

(22) kw 1 i - (akijkgz)i. 

In equation (22), various terms retained are not 
necessarily of the same order, for example the second 
term on the RHS is of lower than the third term on the 
RHS, however, the former term represents the momen- 
tum diffusion in the axial direction and, therefore, is 
expected to contribute to numerical stability and thus, 
it is advantageous to maintain the presence of this term 
in the equation. 

To obtain the interface balance condition, we let 

M,= -nikCk-nkPk+TL.nk 

=b’f; + hf;n, + bf; - (pk) nk + (T.:) ’ nk (23) 

where 

Mf = - ti&, M; = (( pk) - p,) - ((T;,,) - Tin”), 

(244 

M: = -(CT;,,,) - T;,!), M: = h’f;n, + M;, 

(2W 

= @knn + $&k + @knt + ?h). (25) 

The individual components of total momentum trans- 
fer kfk at the interface have the following physical 

meaning: ML denotes the local momentum transfer 
due to mass transfer at the interface, Ml denotes the 
local form or pressure drag, M; the local shear stress. 
In view of equation (5), we can now write the local 
interface balance for momentum as 

FMk = V;nan. 

By noting that o,, = ok,, and 

M; = -niktTk = -nik(Ck - II,) - ni,v, 

= -tik(6k - or) ’ nknk - t&u, 

ni: = - 7nk - mkuI, 
Pk 

.2 

CM: = - ~ni,~T~ = - c2nk 

k k k Pk 

-&ilku,=o, 
k 

(26) 

(274 

(27b) 

(27~) 

It follows from equations (26), (23), (24) and (25) that 

T( - g - pk + r&.>nk = 2Hz1Un1 (28a) 

or, 

[-43-(& -P,)+(T:,, -74 

and 

= 2H,,a (2813) 

T (M: + <rk,>) = 0. (28~) 

Equation (28b) yields 

- M> ; -; - ((P,) - (P,)) ( > 
+ ((7:““) - (T:nn)) = W,,)~. (29) 

When the above equation is supplemented with the 
equation of state, one can then determine interface 
pressures (Pi) and (P2). 

The combination of equations (29) and (28) yields 

-(M> - 4, ; -; - ((fi,) - P,) ( > 
+ (<p,) - p,) + ((7:nn) - 7;nn) 

- (<T:m) - T:,,) = 2((H21) - H&r. (30) 

If we assume that 

(Vi:) N tif, (Hzr) = Hz, (31) 

we obtain from equation (30) 

1 it’+, = 0. (32) 
k 

From equation (27~) we obtain 



where we have assumed that tit, is nearly constant 

around the interface. Equations (24b) and (28~) imply 
that 

c G,* = 0 (34a) 
k 

from which it follows that 

; <&r> = 0 

or 

;I-,, = 0 

where 

d% 
- S,Zk, = 7;., K --~. 

nk nkl 

(34b) 

(34c) 

(34d) 

From equation (34) one can write 

Of 

xM;=O. 
k 

(35) 

The combination of equations (32) and (35) yields 

x(M;+ Min,)=xM;f=O (36) 
k k 

from which we obtain 
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i 
fi12 

s,K ‘(M,) = - j:- - ( Pk) + ~;T;““> ‘) ;;i 

- sr[rk, + K .(r;i,(r,i) K :Mtf)]. (i9j 

We may also note that 

CUk = Ll 

so that for constant cross sectional area ti we have 

x ‘MY! = 0. 
k i‘. 

140) 

The interface velocity in equation (33) can be related 

to fluid velocity and void fraction by considering 

c , 

K. 
! ‘I , 

(Ck - r,) ,?,“l,, = K j (I.~ ~ I.,). nknk ,,kd:;;, 
I’ ’ 

or 

which yields 

lil, ?a, 
(I.,) K = (Fk;) - mm. 

,,,ji, i; 
(41b) 

The use of expression (39) into equation (22) yields 

$ (akpk ((ck,)>)i + $ (a$, <c‘:z>,i 
z 

CT - im (ak((Pk>)i + k (ak’XT;zzNi - (‘kw’kw)i 
I z 

or 

; (CM:) + (M;n,) ). K = K ‘1 (M;f) = 0. (37) 
k 

- (a,p,g,), + {! cpk> + 6m.), 
) 

;; 

- S,[Tk, + (tik(?[) - (M;)IK]/ (42) 
I I 

In view of equations (23) and (27a) we can write 

K’ [W: - (Pk)nk 

I 

+ (7:) nk) + (Mink + ML)] <:;; (38a) 

or 

where we have utilized equation (19) and the fact that 
total cross sectional area is constant. Momentum 
equation (41) is supplemented by interface balance 
equations (29), (33) (34), (37) and (40). 

Energy equution 

The application of equations (A.2) and (A.6) to 

enthalpy equation (3) gives 

The use of equations (20), (31) and (34d) yields 
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In view of equations (47) and (21) we can write 

dV 

+ {[COV(ij, VP,) - COV(c, ’ V ’ Ti)]Uk}i 

- 

is o:w i 
“k ’ nkw 

= - @kz> SkwTkw @l) 

Owing to boundary layer approximation, the fourth 
and fifth terms in equation (43) representing dissi- 
pation work are small compared to dissipation work 
done by the wall shear stress [see equation (51)]. In 
view of the above simplifications, equation (43) 
becomes 

+ [- ri2k2;k - 4; . nk + (<;k> - uI) 

dW 
+ nk . (T; ’ :k) - <;k> (nk . T;)] nk.nkl i 

where covariance is defined as 

nkPk g (akpk cLk>)i + t (akpk <<%ckz>)i 

(43) = - i (ak <d>)i f i (ak qpk>)i 

+ <Gkz>&(ak <pk>h 

cov(h‘. bk) = (tik. 4k) - (tik) (4k). (44) 

In view of equation (17) and the above definition, we 
have 

COV@, VP,) = 0. (45) 

For negligible or linear distribution of shear in either 
phase (these assumptions are approximately valid in 
slug flow and annular two-phase flow, respectively) we 
have 

- (I W,“. 
qk “ks 

> 
i + (<ckz>>skwTkw)i 

- 

4. 

(pkkkck + 4:). nk dV 
j Wk nk ‘nke 1 ij 

+ 

is 

[-tikhk - q: ‘nk + (((i;k> - VI) ‘nkp,k 

W, 

dv 

cov(6k . v . T;) = 0. 

+ nk ’ (T: ’ fik) - <ck>> ’ (nk ’ T:)] ~ . (52) 

(46) 
nk ‘nkI i 

To obtain an interphase balance condition for 
enthalpy we note that in pin bundle applications, the 
fluid speeds of interest are sufficiently low so that the 

In reactor applications, the work done against shear 
stress (dissipation work) and work done by pressure 
are generally small compared to the heat flux term, 
therefore, the above assumption (46) is generally valid 
for almost all flow regimes. In view of boundary layer 
approximation 

<;k> = <Ekz>K. (47) 

The use of equations (17), (19) and (47) yield 

Further assuming that the dissipation work at the 
interchannel gap as compared to enthalpy convection 
and heat flux terms can also be neglected. This 
assumption will certainly be valid if velocity distri- 
bution in a phase is essentially flat, as in this case 

(4). 

[S 

pknk& =O. 1 
d% 

X----E 
(48) 

(53) 
nk ’ nkl s Q, 

(-ti,f;, - qi.n,)&. 
k’ k 

wn,, 
From the use of equations (6) and (23) we can write 

or 

C(-ekFkk nk.d) 

k 

s 

d%? 
(@k> - ;k) ’ T: nkp z 0. (50) 

mk 

*he nk . nke 

=~j~~+nk’u,Pk-~k’T~‘nk. (54) 

k - 

Similarly 

terms like (((4) - 0,) ‘nkpkand nk ‘r; ‘(fik - ((&k>> at 
the interface can be neglected as compared to heat flux 
term q; . n,. Thus, 



At low speeds the above interphase balance equation 
becomes 

1 (ti,i;, + nk y:) = 0 
k 

or 

C(<ri?,h-,) + <a* ‘4;)) = 0. (55) 
* 

In order to calculate the crossflow W~ii as defined by 
equation (Sb) or phase fluid velocity at the gap, we 
need to establish a momentum equation applicable at 
the gap in the direction normal to the gap. The defining 
equation (8b) implies segment averaging where seg- 
ment is taken along the gap having a length sk equal to 
the intercept between the gap and the phase boun- 
daries. To facilitate this segment averaging we place 
the coordinate system at the gap as shown in Fig. 1. 
The application of equations (A.3) and (A.9) to 
equation (2) yields 

1 
. ilk --~ + Pkskgk 

‘7k kw 
. n (56) 

where summation over I, implies summation over all 
extremities of the segment sk at the interface. The x’- 
component of the above vector equation gives the 
momentum equation for cross flow. Thus, taking the 
.w’-component of above equation, recognizing the 
definition (8b) of crossflow, and in addition making 
use of equation (23) we obtain 

(57) 

where we have assumed the body forces consist of 
gravity only and hence, gX = 0. 

For momentum balance in direction normal to the 
interface, we have from equation (28b) 

99x ‘T. (?. CHAWLA and M. /SHIl 

/FUEL PIN 

._-- LVJUIG PHASE 

FIG. 1. Two fluid model for a subchannel. 

For interfacial drag, we utilize equations (34a) and (36) 
to give 

(59) 

where 

= 0. (60) 
ij 

X, = - (<Wt. - 7.:A 

Mt = (<pk),? - jjk) - (<5hn)e - &d @la) 

M:, = M;, f M;Jk, ; h n,-likL = @kje. 

itilb) 

Corresponding to equation (38) we have 

i .I M, --!._ 
fl nk r ?‘ki 

= 

(62) 

We may note that 
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Equation (57), together with equations (58H60), and 
(62) provide the required set of governing equations 
for calculating crossflow. 

SUMMARY AND CONCLUDING REMARKS 

We have studied a general formulation of the two- 
fluid model applicable to a pin bundle. The governing 
equations for the model are equations (12), (13), (42), 
(36), (30), (52), (55), (57), (58), and (60). However, we 
still need several constitutive relationships to close the 
system of equations. Although a significant progress 
has been made in obtaining constitutive relationships 
for drift flux model [25] for flow in pipes, no such 
claims can be made for two-fluid model. Because of the 
assumed quasi-two-dimensional nature of flow in pin 
bundles, a considerably greater number of constitutive 
relationships are required as compared to the flow in 
simple geometries, therefore a considerable effort will 
be required to firmly establish two-fluid model for two- 
phase flows. We may recall even in a single-phase 
turbulent flow in a pin bundle, the firm basis for the 
constitutive relationships for turbulent tluxes at the 
interchannel boundaries is still lacking. It is for these 
reasons we have discussed the two-fluid model only in 
general terms to bring out the various interaction 
terms and to provide a framework for establishing the 
constitutive relationship for these terms. 
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APPENDIX 

The Leibnitz’s theorem 
For a oolume. Let Yt contained in a channel be cut by two 

cross-sectional planes a, II and a, I*+& located a distance AZ 
apart. Let ut be the part of total volume Y, bounded between 
two cross-sectional planes and surface area a, which may 
include both the interface and the external boundary as 
shown in Fig. A-l. Let nk be the unit normal to the surface a, 
directed away from phase k. The Leibnitz theorem applicable 
to volume uk is given as 
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shown m Fig. A-2. Let a, be the bounding surface which may 
both include the interface and the external boundary and nk 
be the unit normal directed away from phase k. Let a, be 
cross-sectional area cutting volume nl, along the closed curve 

% which may include interface as well as the external 
boundary of the channel. Let nLI be the unit normal to the 
curve% in thecross-sectional planea, and directed away from 
phase k. The limiting form of theorem (A.]) with AZ -+ 0 
becomes 

FE. A.2. Geometry for averaging theorems applicable to a 
cross-sectional area uk. 

For u sryment. Consider a line segment .sli (such as formed 
by gap between the interconnecting channels at a given axial 
section at 2 (see Fig. A-3) cutting the bounding surface a, of 
volume rI, at two extremities I, and I,. The limiting form of 
Leibnitz’s theorem for line segment st is then given as 

to a 

/FUEL PIN 

FE. A.3. Geometry for averaging theorems applicable to a 
segment sk. 

where cI. n, is the displacement velocity of a point on the 
bounding surface a,. 

For a cross-sectional urea. Consider a channel with longitu- 
dinal axis along z axis containing a volume L’~ of phase k as 

For a volume. The Gauss theorem applicable to volume rL- 
(see Fig. A-1) is given as 

$1) ^ n 

VB,dr=; ( &dr+ / 11~ B, da lA.3) 
. ‘k (‘2 _I ,,i I 1‘! 

where B,, is r-component of vector B,. t’or a tensor field the 
Gauss theorem can be stated as 

1; V-M,dr = ,II 1 rtz~M,dr + [ n,.M,du. (A.5) 
b I/ .‘U/ 

b-or u cross-,sectional crreu. The Gauss theorem applicable 
to cross-sectional ak (see Fig. A-2) becomes 

If B, = ni the above equation becomes 

For tensor fields the Gauss theorem is given as 

t-or u srymenr. The Gauss theorem for a segment sx (see Fig. 
A-3) becomes 

T-or a tensor field we have 
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MODELE A DEUX FLUIDES DE L’ECOULEMENT DIPHASIQUE DANS LA 
GRAPPE DE BARRE D’UN REACTEUR NUCLEAIRE 

Rbunk-En considkrant un bcoulement diphasique comme un champ subdivisd en deux rtgions turbulentes 

monophasiques avec des front&es mobiles entre les deux phases, de telle sorte que les bilans diffkentiels 

pour l’tcoulement turbulent tridimensionnel s’harmonisent pour chaque sous-rigion et pour I’interface, on 

6tablit la moyenne eulbienne dans la section droite de chaque phase dans un canal donni, et la moyenne 
segmentaire de l’dquation de quantite de mouvement transverse aux front&es entre canaux. Pour simplifier 
les tquations obtenues comme resultat de ces op&ations, on fait l’hypotht%e que le mouvement du fluide dans 

chaque phase est dominant dans la direction axiale, c’est-A-dire que les composantes transversales de la 

vitesse sont petites comparkes aux composantes axiales. On suppose encore que la variation de la 

composante axiale de la vitesse dans un canal est plus forte que la variation le long de la direction axiale. On 
suppose aussi que des arguments semblables peuvent ktre appliquds A la variation d’enthalpie dans un canal. 

A partir de ces considtrations on obtient deux systemes d’tquations de continuitt, de quantitt de mouvement 
et d’6nergie pour dCcrire le mouvement de chaque phase dans la direction axiale. Les termes d’intbraction 
entre phases qui apparaissent dans ces huations sont gouvernb termes d’intiraction entre phases qui 
apparaissent dans ces Cquations sont gouvern6s par des conditions de transfert interfacial obtenues B partir 
des bilans aux interfaces. L’Cquation de la moyenne segmentaire de la quantite de mouvement transverse 

pour chaque phase fournit l’dquation fondamentale de l’e’coulement transversal. 

ZWEI-FLUID-MODELL DER ZWEIPHASENSTROMUNG IM STABBONDEL 
EINES KERNREAKTORS 

Zusnmmenfassun-Durch die Betrachtung der ZweiphasenstrGmung als ein Feld, welches in zwei 
turbulente einphasige Gebiete mit verLnderlichen Grenzen unterteilt ist, die die beiden Grundphasen derart 
trennen, da5 die differentiellen Bilanzgleichungen fiir dreidimensionale turbulente Striimung fiir jedes 
Untergebiet und fiir die Grenzfllchen erfiillt sind, kBnnen wir die Eulersche Fliichenmittelung iiber die 
Querschnittsfliiche jeder Phase in einem gegebenen Kanal und die abschnittsweise Mittelung der 
Querimpulsgleichung entlang der Phasenabschnitte an den Grenzen innerhalb des Kanals durchfiihren. Urn 
die mit Hilfe dieses Verfahrens erhaltenen Hauptgleichungen zu vereinfachen, nehmen wir an, da5 die 
Bewegung des Fluids in jeder Phase in axialer Richtung dominant ist, d. h. die Querkomponenten der 
Geschwindigkeit sind klein im Vergleich zu den axialen Komponenten. 

Wir nehmen weiter an, da5 die VerInderung der axialen Komponente der Geschwindigkeit innerhalb 
eines Kanals vie1 grij5er ist als die VerCnderung in axialer Richtung. Wir setzen ferner voraus, da5 sich die 
Enthalpieschwankung in einem Kanal Bhnlich verhiilt. Als Ergebnis dieser uberlegungen erhalten wir zwei 
Gruppen von Kontinuitlts-, Impuls- und Energiegleichungen, welche die Bewegung von jeder Phase in 
axialer Richtung beschreiben. Die Wechselwirkungs-Terme zwischen den Phasen, die in diesen Gleichungen 
vorkommen, werden bestimmt durch die Transportbedingungen an der Phasengrenze, die man durch 
Grenzfllchenbilanzen erhllt. Die abschnittsweise Mittelung der Querimpulsgleichung fiir jede Phase fiihrt 

auf die Hauptgleichung fiir den Kreuzstrom. 

ABYXXMflKOCTHAJI MOAEJIb AJIfl )JBYX@A3HOI-0 OBTEKAHMII IIYqKA TOHKHX 
CTEPXHER RAEPHOrO PEAKTOPA 

AHHOTPIWP- Ha OCHOBaHHH paCCMOTpeH5iK nByX$a3HOrO nOTOKa KaK norm, KOTOpoe MOXCHO pa36HTb 

Ha LlBe Typ6yJleHTHbIe OIZHO@a3HbIe o6nacm C nOJlBHXHbIMA rpaHHUaMH MeXny LlByMS COCTPBJII- 

IOLUHMH +a3aMH TaKNM o6pa3oM, wO6bI LIH++epeHUBanbHbIe ypaBHeHHI nnR TpeXMepHOrO Ty,%iy- 

neHTHOr0 nOTOKa BL.IJIU cnpaeenmisbr nnR Kaxnofi nono6nacTH a nnn rpaHHubl pa3nena, nposeneHo 

GnepoBcKoe ycpemiewe no nnomana nonepeqtioro ce9eHIIfl Kaxnoii @a3br B Kanane H ycpenHeHtie 
ypaBBeHBn KonH’lecTaa nnsfxewifl B nonepeYBoM Hanpaenemiu Bnonb nepeceqeHHn @a3 Ha rpaiilarax 

Mexny KaHanahfH. Ann ynpoureBrin nonyqeHHblx 0cHoBHbIx ypartaeeaii Ucnonb3yeTca nonyueHHe 

0 TOM, 9To neHxerwe X~KOCTB B Kaxnoii @ase noMHmfpyeT B aKcAanbHor4 Hanpasnemm, ~.e. 

nonepesaue KoimoHeHTbl CKO~~CTH ManbI no cpaBHeHm0 c aKcsfanbHbm.fsi. llpeanonaraercn TaKXe, 

wo 5i3MeHeme aKcHanbHoii KohfnofieHm c~opoc~~l nonepeK KaHana npoHcxonm ropasno 6McTpee, 

SeM u3MeHeHHe CKOpOCTH BnOnb 0cH. RarcKasaHo npennonoXeHBe 0 TOM, ‘ITo aHanorHqHoe ynpo- 

WeHBe MoXHo Hcnonb30BaTb nnn H3MeHeHHR 3HTanbnmi B KaHane. B pe3ynbTaTe aHanri3a nonyqesu 

LlBe CHCTeMbI ypaBHeHHi Hepa3pbIBHOCTH, KOnH'ieCTBa nBHXeHHII H 3HeprHH, OrUiCbIBaK)mHX nepe- 

MeWeHHe KaXLlOti +a3bI B aKCHanbHOM HaIIpaBneHHH. B3aHMOnefiCrBHe @a3 B 3THX ypaBHeHH,,X 

nonwHnev3 ycnOBHnM nepewca Ha rpaenue pasnena, nonyreHHblh4 ~3 paccMoTpeHHn 6anaHca Ha 

rpaHwe pasnena. Pi3 ocpenHeHHor0 ypaBHeHHn KOnHWCTBa nraixewis B nonepesHoM HanpaBneHHH 

nonyqeH0 oc~10Bwe ypaaHeHHe nnn nonepeqHor0 noToKa. 


