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Abstract—By considering two-phase flow as a field which is subdivided into two turbulent single-phase
regions with moving boundaries separating the two constituent phases, such that the differential balances for
three-dimensional turbulent flow hold for each subregion and for the interface, we perform the Eulerian area
averaging over the cross-sectional area of each phase in a given channel and segment averaging of transverse
momentum equation along the phase intercepts at the interchannel boundaries. To simplify the governing
equations obtained as a result of these operations, we invoke the assumption that the motion of the fluid in
each phase is dominantly in axial direction, that is the transverse components of velocity are small compared
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axial components.

We further assume that the variation of axial component of velocity within a channel is much stronger than
the variation along the axial direction. We also assume that similar arguments can also be applied to the
variation of enthalpy in a channel. As a result of these considerations, we obtain two sets of continuity,
momentum, and energy equations describing motion of each phase in the axial direction. The phasic
interaction terms which appear in these equations are governed by interfacial transfer conditions obtained
from interface balances. The segment-averaged transverse-momentum equation for each phase provides the
governing equation for cross flow.

NOMENCLATURE

cross-sectional area normal to z axis;
cross-sectional area for kth phase;

energy at interface defined by equation (6);
i + 42, sum of mass weighted internal
energy and turbulent kinetic energy ;
acceleration due to gravity;

local curvature (H,, > 0 if phase 2 is the
dispersed phase);

é+ P/p;

unit tensor;

enthalpy;

unit vector in z direction;

time-averaged pressure;

time averaged heat flux;

total intercept of kth phase at the in-
terchannel gap;

total perimeter of the interphase at a given
section;

time;

specific internal energy;

mass weighted fluid velocity vector;
cross flow for the kth phase per unit axial
length between channels i and j;
coordinate system at the center of a
channel;

coordinate system at the interchannel gap.

Greek symbols

m,,
2
T,

P+ 1,
time-averaged fluid density;
time-averaged stess tensor.
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Subscripts

e’

boundary between interconnected chan-
nels;

I, vapor-liquid interface;

i, channel i;

k, kth phase;

n, normal direction;

t, tangential direction;

X, directed along x’ direction;

z, directed along z or z’ direction.
Superscripts

T, turbulent;;

t, total ;

fluctuating quantities about mass averaged
variables;

fluctuating quantities about time averaged
variables;

time averaged quantity;

mass averaged quantity.

INTRODUCTION

AN ACCURATE prediction of both single and two-phase
thermal hydraulics of a pin bundle for thermal or fast
reactors is of extreme importance both to the design
and the safety of these reactors. The fluid flow and heat
transfer in a pin bundle is extremely complex, con-
sequently with the exception of the formulation by
Chawla and Ishii [1], all previous attempts (see for
example [2-5]) at formulating the governing equa-
tions both for single and two-phase flows have utilized
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heuristic macroscopic balances using finite control
volumes (e.g. subchannels) for mass, momentum, and
energy.

It has long been recognized that the cross-sectional
area and volume averaging are very useful tools in
formulating governing equations for fluid flow and
heat transfer in very complex geometries. The volume
averaging has been used very successfully in treating
multicomponent flows in porous media [6-8]. As a
result of area averaging, the three-dimensional field
equations are reduced to quasi-one-dimensional
forms. The transfer of the momentum and energy
between the fluid and wall is expressed by empirical
correlations or by simplified models to supplement the
information on changes of variables in direction
normal to the main flow direction which are lost within
a subchannel as a result of area averaging. However,
the application of area averaging alone in a pin-bundle
geometry does not yield a complete description of the
momentum exchange between the channels at the
interchannel boundaries. This consideration in turn
has led to the use of segment averaging along the
interchannel boundary of momentum equation in
transverse (to the gap between the pins) direction to
provide an equation for cross flow. These formal
procedures were utilized for the first time by Chawla
and Ishii [1] in the formulation of the governing
equation for a drift flux model of two-phase flow in a
pin-bundle geometry. The segment and area averaging
has been proposed originally by Vernier and Delhaye
[9] and Kocamustafaogullari [10] for laminar flows,
However, these authors have not formally applied
their methodology to a pin bundle configuration or
extended to turbulent flows.

The drift flux model (or mixture model) is for-
mulated by considering the mixture as a whole, rather
than two-phases separately. The drift flux model thus
requires only four field equations namely, continuity,
momentum, and energy equations for the mixture, and
the continuity equation for one of the phases, say
vapor [1, 11]. On the other hand, a two-fluid model of
a two-phase flow is formulated in terms of two sets of
conservation equations governing the balance of mass,
momentum, and energy of each phase [12]. Since the
macroscopic fields of one phase are not independent of
the other phase, the interaction terms which couple the
transport of mass, momentum, and energy of each
phase across the interphases appear in the field
equation, whereas in the drift flux model which
considers the mixture as whole, these interaction terms
cancel each other. In the two-fluid model formulation,
the transport processes of each phase are expressed by
their own balance equations, therefore it is expected
that the model can predict more detailed changes and
phase interactions than the drift flux model. Although
the drift flux modelis simpler than the two-fluid model,
it requires some drastic constitutive assumptions since
it has only four field equations in contrast to six field
equations in the two-fluid model. Therefore, it is
natural that some of the characteristics of two-phase
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flow will be lost in the drift model. The drift flux model
is generally useful in analyzing two-phase flows where
there exists a strong coupling between the motion of
the two phases, and the information desired is the res-
ponse of total mixture and not that of each constituent
phase separately. For example, in the dvnamic analysis
of two-phase flow systems where the response of total
system is desired such as in the analysis of thermohyd-
raulic flow instability problem in the boiling channels
[13, 14]. Two-phase flow problems involving a sudden
acceleration of one phase may not be appropriately
described by the drift flux model. In these cases, inertia
terms of each phase should be considered, that is. by
use of the two-fluid model.

Previous studies have indicated that unless phasic
interaction terms are accurately modeled in the two-
fluid model, the numerical instabilities are frequently
encountered in the numerical solution of these
models [15-17]. Recent studies by Lahey er al. [18]
and Lyczkowski er al. [19] have demonstrated that
virtual mass originating from momentum interaction
between the two phases has a considerable effect on
improving numerical stability and efficiency. Another
approach to achieving numerical stability is the in-
clusion of ‘artificial viscosity’ n the numerical algo-
rithm to damp out high frequency oscillations occur-
ring possibly due to imprecise modeling. This ap-
proach is currently being followed by Amsden and
Harlow [20] in their two-fluid digital computer codes.
In spite of these shortcomings of the two-fluid modei,
there is, however, no substitute available for modeling
accurately two-phase phenomena where two phases
are weakly coupled. The objective of the present paper
is 10 obtain the governing equations for two-fluid
model for two-phase flows m & pin bundle geometry.

BASIC EQUATIONS

We view two-phase flow as a field which s sub-
divided into two turbulent single-phase regions with
moving boundaries separating the two constituent
phases. such that the differential balances for turbulent
flow hold for each subregion and for the interface,
wherein the latter differential balances which accounts
for singular characteristics of the interface, we further
assume that all interfaces are identical, of zero thick-
ness, and have the same interface velocity. With the
exception of the interface velocity, we assume that all
other singular transferrable properties of the interface
are turbulent in nature. Since the turbulent fields in
each subregion are unsteady because of the moving
and deforming interfaces, one must view conceptually
these turbulent balances as ensemble averages which
are constructed with an assumption that all the
samples of two-phase flows in an ensemble are statis-
tically identical such that if all are observed at a given
instant of time, a given point in each sample is
surrounded by the same phase or is located at the
interface implying the structure of two-phase flows and
the geometry of interfaces arc identical between the
samples. By assuming further that the two-phase flow
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is temporally stationary, then by the ergodic hypo-
thesis the ensemble averages at a given instant of
time become equal to temporal averages. This method-
ology clearly implies extension of the continuum
approach applicable to a single-phase unsteady turbu-
lent flow. Consequently, the governing equations for
each of the bulk phases are identical to the basic
Reynolds’ equation for nonsteady turbulent flow. This
basic consideration is identical to that utilized by
Slattery [21]. In view of the assumption that interfaces
consisting of singular surfaces of zero thickness rather
than assuming three-dimensional regions of finite
thicknesses, the resulting jump conditions are identical
to those that will be obtained by volume integration of
single-phase turbulent flow over material volume
containing a phase interface in the manner as done by
Slattery [21].

The previously discussed methodology for obtain-
ing basic governing equations differs both from the
procedure by Ishii [22] and that by Delhaye [23]. Ishii
directly formulates a two-fluid model for three-
dimensional two-phase flows by time averaging the
two-phase mixture rather than each component as we
have carried out. On the other hand, Delhaye recom-
mends double time averaging of two-phase mixture to
smooth out the discontinuities in the time derivatives
of single time-averaged quantities in the field.

Bulk phase

In view of the above discussions, the basic governing
equations for the bulk phase can be written as (see [24]
for detailed derivation):

continuity
op _ .
T:+V'(pkvk)=0§ )
momentum
0P S s B 7 1]
6kt L V (pbidi) = ~VP, + V- (§ + 1) + 5ugs;
2)
energy
Opih

+ V(o) = —V- (G + qr)

ot

oP, . __ T ~
+ 5 + 0, VP + (T + 74): Vi, (3)

In the above equations, we have utilized a mass-
weighted-averaging procedure rather than conven-
tional time averaging. The former procedure is well
known in the studies of gas mixtures. The mass-
weighted averaging greatly simplifies the governing
equations. For example, it eliminates terms like pyv},

7" 2

UuPrVi» and pyvgu, in the continuity and momentum
equations. Analogous simplifications are also achieved
in the energy equations. In fact, as a result of a mass
weighting, the form of the equations is the same as for
incompressible flow. To illustrate this, let us for
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example consider the time average of convective flux of
a quantity

PPt = (B + PP, + @ + 1))

= Vb + Pl i, + poh

+ p¥idy + p Vi

In view of definition of mass-weighted quantity, i.e.,

Ve Prbx
y U= ——

Py Px

P =

we have

\r’kﬁkplz = Pk"r'kvfx =p Vi, =0

which results in

oy, = 5P + p Witk

The form of the above equation is clearly the same as it
would be for incompressible flow.

Interface

A detailed statement of underlying simplifying as-
sumptions and the derivation of interface balance
equations is given in [24]. These balance equations are
reproduced here for ready reference :

mass
2 2
2 AP B~ vt = ) my = 0; 4
k=1 k=1
momentum

2
Z {mkl}’h — Ny (]':‘[k + T,’{)}
k=1

2 .2
my 5 t '
= Z [(T_ + Pk + Tknn)"k + Tkntjl
k=1L\Px

=V, non; (%)

energy
2
kz,l {mgée + 350) + - (@ + af)
e [+ 1) 5]} =Y E, =0 (6)
X
where
=1+ 1.

AREA AVERAGED EQUATIONS

We assume that both in the liquid and in the vapor
phase, the motion of the fluids is dominantly in the
axial direction, that is the transverse components of
velocity are small compared to the axial component.
We further assume that within a channel the variation
of the axial component v,, is much stronger than the
variation along the axial direction. This behavior is
analogous to that which exists in a boundary layer so
that the longitudinal or axial length scale L (in which
the axial variations in v, take place) is very much
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larger than the length scale § in a transverse direction
{over which transverse variations in v, take place) i.e.
8/L<« 1. We further assume that similar arguments can
be applied to the variation of enthalpy or temperature
in a channel. In conclusion, it is assumed that the
boundary layer approximation can be applicd.

Continuity equation

The application of Leibnitz theorem (A2} and
divergence theorem (A.6) (see Appendix) to equation
(1) yields for a channel denoted by i in the subassembly
(see Fig. 1):

+ ng {2, KPibies i

d%
=7 Pl — U1 e
%, o

N, . d%
- Z Piby " 1y . (7
iT1\ Ju, Ny My Ji5

i
5;(“1( P

I d 2
;‘;LI ;};‘fn Feo (8a)
( [ i Efi‘;)
o b o knk nke ] pvkej (8b}
Equation (7) becomes
b5 . ¢
a‘t(ak<<)0k>>)i ““““ (ak<<pklkz>>)t
= (i<l — T Wagy )
J

Here (€...)) defines the area averaged value of a
quantity, i.e.

LF )zt = — ”‘ Fu{x, v,z,t)da. (10}

oy
In a typical reactor application, the point-wise vari-
ation of the density in a phase at a given axial
location in a channel is generally small as compared to
the axial variation. It is therefore assumed that

<<pk>>(z3 Z) = 16&(2» { } (I i }

In view of assumption (11), equation (9) becomes

: 8 .
g‘t(akﬁk)i + P (a0 LB 2 )i

= —{s; (M) (12}

ZW@
In view of interface balance equation (4) and definition
(8a) we obtain the following interfacial area averaged
mass-transfer condition

2
Y <> =0. {13}
k=1
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Momenium equation
The application of equations {A.2) and {A.6) to
equation (2) yields

¢
o (ak<</)k>>'{lk})+ (ak<</)klklk))

TV
= } ikt — ) ey - 1
! ey Ay Ny L
. _ode
- Zl i Pl Wty =
T L e g, ii;,

IS _ .
+ P [a M, + 1,00

g7 4 . d.
+3 * (e + 1)y
i Je M "By i
o o 5 de P
+s ‘ (0, + 7y !
L Ry g

+ (P da)igr (14)

where ¢, = %, + %, subscript w stands for a wall or
an impenetrable surface, and {{ } denotes a mass
weighted, area averaged qudnutv e

‘<!’kh/
{F,} = .

\/ /) B

(1%

From the use of equation {11}, the above relationship
becomes

{Fb = <FD. (16}

In view of the assumed applicability of boundary-layer
approximation to the flow in the pin bundle for each
phase the normal components of the vector momen-
tum equation {14} are small compared to the axal
component, furthermore.

Py = Pizny 1N

The above assumption is consistent with the
boundary-layer approximation applicable to vertical
flow in a pin bundle. In view of these simplifications,
the momentum equation (14) simplifies to

(P <<1,¢, )

é = ~
o (At KOz D) +

N

{ “
(C‘k &Py «,' (g €Tpge + T V)
7 ds
— PK -np }
v My " My i
I d%
+ (T K + 1, K}ong
J, g i
M de
+ (f K+t Kym
e Hy M i
| P.K - o
- By
Je ¢ k”k ”m R
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+ [J (Tie + ) 1y i }
% My "My |ij

- [J PO — v} D K i J
%, My My i

] - o
Oy MOy, ——— | — (Ox)9:
zj:‘:Lthk e e s Pri)id.

ij

(18)

where we have assumed that the gravity is the only
body force. The above equations can be simplified
further by noting that

d¥
Joxmfe o
d¢ oay
zzgwf%,K.nk"k'"m T T 20)
_ d% r
— Spwliw = ‘" (7)) K M T’ Tk Iwall =0.
(21)

Equation (18) becomes

0 0 .
7 (@pr KB D) + 5 (aup KT ));

0 ~ 0
== gg(ak KPD)i + 5;(“1‘ LThzz D) — GrwTawi
d¥
* ;[ .L.w 0% = Pibuli ) K”k '"ke:Iij

_ d¥
+I:f (=7, — Py + - 13) - K— :,
%, " Mer

_ d¥¢
- P, - K — (aDrg: i
l:J\%“ [ nk,nkwl (arPrg:)

In equation (22), various terms retained are not
necessarily of the same order, for example the second
term on the RHS is of lower than the third term on the
RHS, however, the former term represents the momen-
tum diffusion in the axial direction and, therefore, is
expected to contribute to numerical stability and thus,
it is advantageous to maintain the presence of this term
in the equation.
To obtain the interface balance condition, we let

(22)

M, = —mb, — m Py + 4,
=M; + Min, + M — (PO + (i) ony (23)
where

My = —riyd, Mi= (P> = P) — ((Thwn) — Thna),
(24a)

Mi = — (T — T, Mi = Min, + M,
(24b)

M Tk = (§, + 1) my
= (fknn + r{nn)nk + (fkm + le.nt)' (25)

The individual components of total momentum trans-
fer M, at the interface have the following physical
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meaning: M} denotes the local momentum transfer
due to mass transfer at the interface, M} denotes the
local form or pressure drag, M}, the local shear stress.
In view of equation (5), we can now write the local
interface balance for momentum as

Y M, =V, non. (26)
K
By noting that v;, = 1,,, and
M;f = —myb, = —my(f, — vf) — My,
= —my(Dy — vp) "y — MYy
-2
m
= — —_ink — myvy, (27a)
Px

-2
YM = — Vi, = -Y %n,  (27b)
k k k Pk
—er‘l,,v,=0,
k

It follows from equations (26), (23), (24) and (25) that

(27c)

-2
Z(_ ';_k - P+ T;m:)nk =2H,;0n, (282)
x k

or,

a1 1 5 t t
l:_ml (..p__l -—E>— (Pl - Pz) + (Tlnn —TZHH)]

=2H,,0c (28b)

and
2 (M + {Tw») = 0. (28¢)
x
Equation (28b) yields
1 1 _ _
- <m%>(_— - _—> — (P = (P)
Pi P2
+ (KT — {Tomp) = 2{H3; D0, (29)

When the above equation is supplemented with the
equation of state, one can then determine interface
pressures {P,» and (P,).

The combination of equations (29) and (28) yields

1 1 = =
- (3> — mf)(;: “p.‘) - (P —Py)

1 2

+ (<P2> - P_Z) + (<T‘1nn> - r'lnn)

= (Thm) — Thm) = 2(CH > — Hy)e. (30)
If we assume that
K> > wif, (Hpy )~ Hy, (31)
we obtain from equation (30)
;M;"nk =0. (32)

From equation (27c) we obtain
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. d¢
K- Z My ——— | = ;K ka<l71>—' =0
k J#, ny“ny k -

(33)

where we have assumed that iy is nearly constant
around the interface. Equations (24b) and (28c) imply
that

Y T =0 (34a)
k
from which it follows that

2 {Thy =0 (34b)
k

or

(34c)

Ytu=0
k

o
— STy = T4, K »~d6
SiTer = knt .
%, My " Ny

From equation (34) one can write

2 T = 2. {Thn? = 0
k k

where

(344d)

or

Y M =0 (35)

The combination of equations (32) and (35) yields

Y (M + Min) =3 Mi=0 (36)
k k

from which we obtain

d¥
) J (M + Ming) K -———

1M
or

Y M + Miny) K = K- Z<M>—0 37)

In view of equations (23) and (27a) we can write

d¥
K'J M,
@ My Mgy

= KJ[(Mi— <1—)k>nk
de
+ (T m) + (M, + M, )]n —-

or

mf 3
K-(M> =K [J‘( (" p: (PO + <Tkm.>)

d% d%
X = } J\ <Tknl>
My~ Nyq “, "k ”kl

%
—K-j Dy 4% L K. (MP. (38b)
.

Ry My

The use of equations (20), (31) and (34d) yields
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K-(Mp = (— 'p (B + ¢ r,(,,,,>\)(\

k

ERRS

— sty + K-t (ro) K- (MO
We may also note that
Ya,=ua

so that for constant cross sectional area a we have

{39)

ll
Ly (40)

x-[\/\

(‘\:

ka

The interface velocity in equation (33) can be related
to fluid velocity and void fraction by considering

( d% [ d%
K J (G —t)) =K~ l (O = 1) iy
i i

M Mgy Jr Hy " #gy
or
. \ d% i, Cug
K (5 — ot = K- | My, 40T
v, Pk nety P 02
(dla)
which yields
wy Cdy,
ey K =iy — * (k' {(41b)
Sy €2

The use of expression (39) into equation (22) yields

o . ¢ -
= (P KT )i + 57 (AP XC!
ot oz

b _ ¢ . )

= - a’;(ak<<Pk>>)i + a?(ak<szz»)i = (S Tiow s
. d‘é’
+ Z (M T — Prlily 1) - K-
J L Jt ”k nke i

mi _ \éda
- (akpkgz)i + {(‘ T’f' s <Pk> + <T:m,,>>j:’f
Px Sz

— st + (Mo — (MD)- K]i( (42)

where we have utilized equation (19) and the fact that
total cross sectional area is constant. Momentum
equation (41) is supplemented by interface balance
equations (29), (33), (34), (37) and (40).

Energy equation
The application of equations {A.2) and (A.6) to
enthalpy equation (3) gives

© (adeladh + — (@il i)
ot 0z

¢ I3} _
= — —(@&gP) + — (@ L P Dk
cz ot

(ak<<Pk>>)] +: (a KK (T TPk

0z

+ [<<lkz>>

- [<<tvk o2 @k K
] 0z
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+ {[COV(&, - VP,) — COV(@, -V t})]a.}:

d¥
M My )

_{J‘% [a: — KoY P+ LBy T

- Z{ _L [Bidudi + 4 — By Py

d¥ }
My N Jij

+{L€ [_mkr’k-‘ﬂc'"k+ (LBe» — Ul)'"kpk

!

= @) + B> Tl e

d¥

+"k'(fi'bk)—<<5k>>'(nk'fi)]n " } (43)
IR

where covariance is defined as
COV( - i) = ¥~ i — W {dw>-

In view of equation (17) and the above definition, we
have

(44)

COV(, - VP,) = 0. 45)

For negligible or linear distribution of shear in either
phase (these assumptions are approximately valid in
slug flow and annular two-phase flow, respectively) we
have

COV(,-V-1}) ~ 0. (46)

In reactor applications, the work done against shear
stress (dissipation work) and work done by pressure
are generally small compared to the heat flux term,
therefore, the above assumption (46) is generally valid
for almost all flow regimes. In view of boundary layer
approximation

Koy = Ko, D K. 47)
The use of equations (17), (19) and (47) yield
. d¥
KoY |: J%: Py m _nke:| ~ Q. {48)
Similarly
. _ d¥¢
Lo f%k Py, T 0. (49)

Further assuming that the dissipation work at the
interchannel gap as compared to enthalpy convection
and heat flux terms can also be neglected. This
assumption will certainly be valid if velocity distri-
bution in a phase is essentially flat, as in this case

&0y =9, and
d#
j (KoY ~B) i ~0. (50)
Gre k" Mke
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In view of equations (47) and (21) we can write
d¥

ny Ny,

<<@:>>J K-7m
G

= - <<5kz>> SicwTiw

Owing to boundary layer approximation, the fourth
and fifth terms in equation (43) representing dissi-
pation work are small compared to dissipation work
done by the wall shear stress [see equation (51)]. In
view of the above simplifications, equation (43)
becomes

o . o .
% (@ P KD + — (@i Kb D)
t 0z

(51)

P d _
= - a(ak Lgid) + E(ak P

0 _
+ <<5kz>>a(ak LPD);

_ d®
- i * 1y
G h

g Mew
- Z[ L (BB + i) -1
J k

>' + (K0 ) Sk Trow )i

d¥ J
My Me iy

+ {J% [ =i — gi - m + (KBeY — v7) - mcPy

d%

+ M (T ) — K0 - (e 1)) } N 23]

Py~ Myp )y

To obtain an interphase balance condition for

enthalpy we note that in pin bundle applications, the

fluid speeds of interest are sufficiently low so that the

terms like (€5, — v;) - m Py and n, -7} - (6, — 5 at

the interface can be neglected as compared to heat flux
term g}, - n;.. Thus,

{L [_mkﬁk — gy m + (B — v) mPy

+ n 7 (B — KGY))
4

Ny " Mg

o~ , d¥
~ (g(_mkhk_qk'nk) .

Ny Py

(53)

From the use of equations (6) and (23) we can write

il
™M
/_,\
§.
o]
+
e
|
|
=
SR
N

I
|
gl
SN
=]
I :§~
+
=
~
N’

or
Z(—rr’tﬁk ~ M qi)
k

oy s
y 5 U + v Py~ B thon. (54)
k
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At low speeds the above interphase balance equation
becomes

Z(”hkﬁk +moq) =0

k

or

S (k> + (ny gy =0 (55)

Momentum equation for crossflow

In order to calculate the crossflow W,;; as defined by
equation (8b) or phase fluid velocity at the gap, we
need to establish a momentum equation applicable at
the gap in the direction normal to the gap. The defining
equation (8b) implies segment averaging where seg-
ment is taken along the gap having a length s, equal to
the intercept between the gap and the phase boun-
daries. To facilitate this segment averaging we place
the coordinate system at the gap as shown in Fig. 1.
The application of equations (A3} and (A9) to
equation (2) yields

. Y s

& . ,
7( ; Prlitrxdy )
ox’ ;

| (ddy ) + -
8 i o S A

0
e/ A
+ - ( J Pibilyz Ay’ )

Sp i

=3
3

T

Ty
i

:~3{|(_my+¢ymy]

([ meara]

+ 2[—&(5& ~ ) mb + (1P + t}‘)‘n,‘]
L .

+ -
é

N'I"‘.-}

(56)

1 1
X s 3 T Hg
Hy Py 1, [T Y

where summation over {; implies summation over all
extremities of the segment s, at the interface. The x'-
component of the above vector equation gives the
momentum equation for cross flow. Thus, taking the
x'-component of above equation, recognizing the
definition (8b) of crossflow, and in addition making
use of equation (23) we obtain
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8

5 { Pk + Ikx‘:>di 1

K ]
+ ci- e Flp
i ‘ ny ”u ij I, IWRLTR T

(57)

+ PiSedx

where we have assumed the body forces consist of
gravity only and hence, g, = 0.

For momentum balance in direction normal to the
interface, we have from equation (28b)

2 i;-ij P, - P
{%{: ma(pl 7a, (P 2)
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For interfacial drag, we utilize equations (34a) and (36)
to give
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Corresponding to equation (38) we have
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Equation (57), together with equations (58)-(60), and
(62) provide the required set of governing equations
for calculating crossflow.

SUMMARY AND CONCLUDING REMARKS

We have studied a general formulation of the two-
fluid model applicable to a pin bundle. The governing
equations for the model are equations (12), (13), (42),
(36), (30), (52), (55), (57), (58), and (60). However, we
still need several constitutive relationships to close the
system of equations. Although a significant progress
has been made in obtaining constitutive relationships
for drift flux model [25] for flow in pipes, no such
claims can be made for two-fluid model. Because of the
assumed quasi-two-dimensional nature of flow in pin
bundies, a considerably greater number of constitutive
relationships are required as compared to the flow in
simple geometries, therefore a considerable effort will
be required to firmly establish two-fluid model for two-
phase flows. We may recall even in a single-phase
turbulent flow in a pin bundle, the firm basis for the
constitutive relationships for turbulent fluxes at the
interchannel boundaries is still lacking,. It is for these
reasons we have discussed the two-fluid model only in
general terms to bring out the various interaction
terms and to provide a framework for establishing the
constitutive relationship for these terms.
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APPENDIX

The Leibnitz’s theorem

For a volume. Let ¥, contained in a channel be cut by two
cross-sectional planes g, |, and a, |, . », located a distance Az
apart. Let v, be the part of total volume ¥, bounded between
two cross-sectional planes and surface area a; which may
include both the interface and the external boundary as
shown in Fig. A-1. Let n, be the unit normal to the surface a;
directed away from phase k. The Leibnitz theorem applicable
to volume v, is given as

0 oF,
P ukadv= vkydv-*— a,Fkv,~n,‘da (A1)
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FiG. A.1. Geometry for averaging theorems applicable to a
volume z,.
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F1G. A.2. Geometry for averaging theorems applicable to a
cross-sectional area ;.
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F1G. A.3. Geometry for averaging theorems applicable to a
segment s;.

where ¢; - n, is the displacement velocity of a point on the
bounding surface a;.

For a cross-sectional area. Consider a channel with longitu-
dinal axis along z axis containing a volume v, of phase k as

T. C. Cuawia and M. [sHlf

shown in Fig. A-2. Let g, be the bounding surface which may
both include the interface and the external boundary and n,
be the unit normal directed away from phase k. Let a, be
cross-sectional area cutting volume v, along the closed curve
% which may include interface as well as the external
boundary of the channel. Let n,; be the unit normal to the
curve % in the cross-sectional plane a, and directed away from
phase k. The limiting form of theorem (A.1) with Az -0
becomes

(A2)

o7
X ’ Feda = - e
arly, ar L hy Ry

OoF, A d%
——da + Fovy -

For a segment. Consider a line segment s, (such as formed
by gap between the interconnecting channels at a given axial
section at z (see Fig. A-3) cutting the bounding surface a; of
volume r, at two extremities /; and {,. The limiting form of
Leibnitz’s theorem for line segment s, is then given as

o P
i F.ds =

BN RN

CF, Uiy
erds 4+ Y By
t

¢ DL Mg

{A3)

The Gauss theorem
For a volume. The Gauss theorem applicable to volume v,
(see Fig. A-1)is given as
¢
’ ‘ B, dv +
U

cz

“ V- Byde =

&

ny - B, da (A.4)

s

where B,, is z-component of vector B,. For a tensor field the
Gauss theorem can be stated as

Py ~ ”

‘ d /
V-Mdv=-——| n-Myde+ | m-Mda (AS)
‘I“ ¢ vy Ja

o i

For u cross-sectional area. The Gauss theorem applicable
to cross-sectional g, (see Fig. A-2) becomes

+ ~

i 4
V- B,da =

B.da + ne B r;;; . {A6)
R kM

-
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If B, = n, the above equation becomes

‘ ¢ 0 (A7
@y = —Q M N {A.7)
ozt T e
For tensor fields the Gauss theorem is given as
; d%
n, Myda + | n-Mp-o—e.
o My ey,
{A.8}

For a segment. The Gauss theorem for a segment s, (see Fig.
A-3) becomes

n _—

B.ds+ . | B.ds

CX Uy,

cz
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For a tensor field we have
~ (- ” [,
V- M,ds= J n, - Mds + - -
Js, = Cx
1
x| neMpds+ Y o M—— {A.10)
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MODELE A DEUX FLUIDES DE L'ECOULEMENT DIPHASIQUE DANS LA
GRAPPE DE BARRE D'UN REACTEUR NUCLEAIRE

Résamé—En considérant un écoulement diphasique comme un champ subdivisé en deux régions turbulentes
monophasiques avec des frontiéres mobiles entre les deux phases, de telle sorte que les bilans différentiels
pour I’écoulement turbulent tridimensionnel s’harmonisent pour chaque sous-région et pour l'interface, on
établit la moyenne eulérienne dans la section droite de chaque phase dans un canal donné, et la moyenne
segmentaire de 'équation de quantité de mouvement transverse aux frontiéres entre canaux. Pour simplifier
les équations obtenues comme résultat de ces opérations, on fait I'hypothése que le mouvement du fluide dans
chaque phase est dominant dans la direction axiale, c’est-a-dire que les composantes transversales de la
vitesse sont petites comparées aux composantes axiales. On suppose encore que la variation de la
composante axiale de la vitesse dans un canal est plus forte que la variation le long de la direction axiale. On
suppose aussi que des arguments semblables peuvent étre appliqués 4 la variation d’enthalpie dans un canal.
A partir de ces considérations on obtient deux systémes d’équations de continuité, de quantité de mouvement
et d’énergie pour décrire le mouvement de chaque phase dans la direction axiale. Les termes d'intéraction
entre phases qui apparaissent dans ces équations sont gouvernés termes d’intéraction entre phases qui
apparaissent dans ces équations sont gouvernés par des conditions de transfert interfacial obtenues a partir
des bilans aux interfaces. L’équation de la moyenne segmentaire de la quantité de mouvement transverse
pour chaque phase fournit Péquation fondamentale de I’écoulement transversal.

ZWEI-FLUID-MODELL DER ZWEIPHASENSTROMUNG IM STABBUNDEL
EINES KERNREAKTORS

Zusammenfassung—Durch die Betrachtung der Zweiphasenstromung ais ein Feld, welches in zwei
turbulente einphasige Gebiete mit verdnderlichen Grenzen unterteilt ist, die die beiden Grundphasen derart
trennen, dafl die differentiellen Bilanzgleichungen fiir dreidimensionale turbulente Stromung fiir jedes
Untergebiet und fiir die Grenzflichen erfiillt sind, kdnnen wir die Eulersche Flichenmittelung iiber die
Querschnittsfliche jeder Phase in einem gegebenen Kanal und die abschnittsweise Mittelung der
Querimpulsgleichung entlang der Phasenabschnitte an den Grenzen innerhalb des Kanals durchfiihren. Um
die mit Hilfe dieses Verfahrens erhaltenen Hauptgleichungen zu vereinfachen, nehmen wir an, daf die
Bewegung des Fluids in jeder Phase in axialer Richtung dominant ist, d. h. die Querkomponenten der
Geschwindigkeit sind klein im Vergleich zu den axialen Komponenten.

Wir nehmen weiter an, daB die Verinderung der axialen Komponente der Geschwindigkeit innerhalb
eines Kanals viel groBer ist als die Verdnderung in axialer Richtung. Wir setzen ferner voraus, daB sich die
Enthalpieschwankung in einem Kanal éhnlich verhilt. Als Ergebnis dieser Uberlegungen erhalten wir zwei
Gruppen von Kontinuitéts-, Impuls- und Energiegleichungen, welche die Bewegung von jeder Phase in
axialer Richtung beschreiben. Die Wechselwirkungs-Terme zwischen den Phasen, die in diesen Gleichungen
vorkommen, werden bestimmt durch die Transportbedingungen an der Phasengrenze, die man durch
Grenzflichenbilanzen erhilt. Die abschnittsweise Mittelung der Querimpulsgleichung fiir jede Phase fiihrt

auf die Hauptgleichung fiir den Kreuzstrom.

ABYXXKUAKOCTHAA MOJAEJL NI JBYXPA3ZHOIO OBTEKAHUSA MYYKA TOHKHX
CTEPXHEU SAJEPHOI'O PEAKTOPA

Aunoramms — Ha ocHOBaHMH pacCMOTpPEHHA ABYX(a3HOro NOTOKa KakK N0Js, KOTOPOE MOXHO pa3buTh
Ha 1pe TypOyneHTHbIE OnHOda3HBle 067aCTH C MOABHXHBLIMH IPAaHHUAME MEXIY ABYMsS COCTABIIA-
towume $azamu TaxuM ob6pa3om, uTobnl nuddEpeHIHANbHbIE ypaBHEHUS Ul TPEXMEPHOTO Typby-
JIEHTHOTO NOTOKA GBLIH CpaBEIMBEL Ul KAX/IOA NOAOGNACTH M AIA TPAaHHUBI pa3fiea, MPOBEIEHO
IMNIEPOBCKOE YCPEOHEHHE 1O TUIOIIANH MONEPEHHOro CEYeHMs KaxAOM (basbl B KaHANE M YCPeIAHEHHE
YPaBHEHHA KOJIMYECTBA BHMXEHHs B MONEPEuHOM HANPaBJICHHH BAOJb HepecedeHHs a3 HA rpaHHIax
Mexy KaHanaMH. [Ins ynpoILieHHA MOJNYHEHHBIX OCHOBHBIX yPaBHEHHH MCHOMB3YeTCS OMyILEHHE
O TOM, YTO ABHKEHHE XHIOKOCTH B Kax1oH (a3ze TOMHHHPYET B akCHaAbHOM HalpaBJIEHHH, T. €.
nonepe4Hble KOMIIOHEHTH CKOPOCTH MaJibl 10 CPAaBHEHHIO ¢ aKCHaJIbHBLIMH. [Ipeanonaraercs Takxe,
4TO M3MEHEHHE aKCHAJbHOM KOMIOHEHTHI CKOPOCTH MOMEpeK KaHajla NPOMCXOAMT ropasao 6uictpee,
YeM H3MEHEHHE CKOPOCTH BJOJIL OCH. BLICKa3aHO NpeanonoXeHHe O TOM, YTO AHAJOTHYHOE YNpO-
LICHHE MOXHO HCIIOJIB30BATh /IS M3MEHEHHs SHTANBbNHH B KaHale. B pe3yibTaTe aHANH3a NMOJyYeHBI
IBe CHCTEMBI YPaBHECHHH HEpa3pPbLIBHOCTH, KOJHMHYECTBA ABHXCHHA M JHEPIHH, ONMHMCHIBAIOIIMX MEpE-
MeIleHHe Kax 10 (a3bl B aKCHANLHOM HaNpaBNeHHH. BiaumorneiicTBHe (a3 B 3THX ypaBHEHMAX
MOIYHHACTCH YCIOBHAM I€PEHOCAa Ha IPaHHIE pa3jena, MOJY4eHHBIM H3 PaccMOTDEHMs Oanamca Ha
rpasuue pasgena. M3 oCpeHEHHOro ypaBHeHHs KOJIMHECTBA OBIKEHHS B IIONEPEYHOM HAIlPaBJIEHHH
NOy4€HO OCHOBHOE YpaBHEHHE IS MONEPEYHOro NoToKa.
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